Finite type invariants for cyclic equivalence classes of nanophrases
Yuka Kotorii
Fundamenta Mathematicae, Tome 227 (2014), p. 211-228 / Harvested from The Polish Digital Mathematics Library

We define finite type invariants for cyclic equivalence classes of nanophrases and construct universal invariants. Also, we identify the universal finite type invariant of degree 1 essentially with the linking matrix. It is known that extended Arnold basic invariants to signed words are finite type invariants of degree 2, by Fujiwara's work. We give another proof of this result and show that those invariants do not provide the universal one of degree 2.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:286071
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-9,
     author = {Yuka Kotorii},
     title = {Finite type invariants for cyclic equivalence classes of nanophrases},
     journal = {Fundamenta Mathematicae},
     volume = {227},
     year = {2014},
     pages = {211-228},
     zbl = {1302.57055},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-9}
}
Yuka Kotorii. Finite type invariants for cyclic equivalence classes of nanophrases. Fundamenta Mathematicae, Tome 227 (2014) pp. 211-228. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-9/