We develop a dimer model for the Alexander polynomial of a knot. This recovers Kauffman's state sum model for the Alexander polynomial using the language of dimers. By providing some additional structure we are able to extend this model to give a state sum formula for the twisted Alexander polynomial of a knot depending on a representation of the knot group.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-4, author = {Moshe Cohen and Oliver T. Dasbach and Heather M. Russell}, title = {A twisted dimer model for knots}, journal = {Fundamenta Mathematicae}, volume = {227}, year = {2014}, pages = {57-74}, zbl = {1311.57010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-4} }
Moshe Cohen; Oliver T. Dasbach; Heather M. Russell. A twisted dimer model for knots. Fundamenta Mathematicae, Tome 227 (2014) pp. 57-74. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-4/