A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14, author = {Lev Rozansky}, title = {An infinite torus braid yields a categorified Jones-Wenzl projector}, journal = {Fundamenta Mathematicae}, volume = {227}, year = {2014}, pages = {305-326}, zbl = {1336.57025}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14} }
Lev Rozansky. An infinite torus braid yields a categorified Jones-Wenzl projector. Fundamenta Mathematicae, Tome 227 (2014) pp. 305-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14/