An infinite torus braid yields a categorified Jones-Wenzl projector
Lev Rozansky
Fundamenta Mathematicae, Tome 227 (2014), p. 305-326 / Harvested from The Polish Digital Mathematics Library

A sequence of Temperley-Lieb algebra elements corresponding to torus braids with growing twisting numbers converges to the Jones-Wenzl projector. We show that a sequence of categorification complexes of these braids also has a limit which may serve as a categorification of the Jones-Wenzl projector.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:282730
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14,
     author = {Lev Rozansky},
     title = {An infinite torus braid yields a categorified Jones-Wenzl projector},
     journal = {Fundamenta Mathematicae},
     volume = {227},
     year = {2014},
     pages = {305-326},
     zbl = {1336.57025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14}
}
Lev Rozansky. An infinite torus braid yields a categorified Jones-Wenzl projector. Fundamenta Mathematicae, Tome 227 (2014) pp. 305-326. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm225-1-14/