Countable dense homogeneous filters and the Menger covering property
Dušan Repovš ; Lyubomyr Zdomskyy ; Shuguo Zhang
Fundamenta Mathematicae, Tome 227 (2014), p. 233-240 / Harvested from The Polish Digital Mathematics Library

We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.

Publié le : 2014-01-01
EUDML-ID : urn:eudml:doc:283382
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3,
     author = {Du\v san Repov\v s and Lyubomyr Zdomskyy and Shuguo Zhang},
     title = {Countable dense homogeneous filters and the Menger covering property},
     journal = {Fundamenta Mathematicae},
     volume = {227},
     year = {2014},
     pages = {233-240},
     zbl = {06280648},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3}
}
Dušan Repovš; Lyubomyr Zdomskyy; Shuguo Zhang. Countable dense homogeneous filters and the Menger covering property. Fundamenta Mathematicae, Tome 227 (2014) pp. 233-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3/