We present a ZFC construction of a non-meager filter which fails to be countable dense homogeneous. This answers a question of Hernández-Gutiérrez and Hrušák. The method of the proof also allows us to obtain for any n ∈ ω ∪ {∞} an n-dimensional metrizable Baire topological group which is strongly locally homogeneous but not countable dense homogeneous.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3, author = {Du\v san Repov\v s and Lyubomyr Zdomskyy and Shuguo Zhang}, title = {Countable dense homogeneous filters and the Menger covering property}, journal = {Fundamenta Mathematicae}, volume = {227}, year = {2014}, pages = {233-240}, zbl = {06280648}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3} }
Dušan Repovš; Lyubomyr Zdomskyy; Shuguo Zhang. Countable dense homogeneous filters and the Menger covering property. Fundamenta Mathematicae, Tome 227 (2014) pp. 233-240. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-3-3/