We prove that if a Δ¹₁ function f with Σ¹₁ domain X is σ-continuous then one can find a Δ¹₁ covering of X such that is continuous for all n. This is an effective version of a recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-2-4, author = {Gabriel Debs}, title = {Effective decomposition of $\sigma$-continuous Borel functions}, journal = {Fundamenta Mathematicae}, volume = {227}, year = {2014}, pages = {187-202}, zbl = {1338.03091}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-2-4} }
Gabriel Debs. Effective decomposition of σ-continuous Borel functions. Fundamenta Mathematicae, Tome 227 (2014) pp. 187-202. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm224-2-4/