Necessary conditions and sufficient conditions are given for to be a (σ-) m₁- or m₃-space. (A space is an m₁-space if each of its points has a closure-preserving local base.) A compact uncountable space K is given with an m₁-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2, author = {Ziqin Feng and Paul Gartside}, title = {Function spaces and local properties}, journal = {Fundamenta Mathematicae}, volume = {220}, year = {2013}, pages = {207-223}, zbl = {1286.54004}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2} }
Ziqin Feng; Paul Gartside. Function spaces and local properties. Fundamenta Mathematicae, Tome 220 (2013) pp. 207-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2/