Necessary conditions and sufficient conditions are given for to be a (σ-) m₁- or m₃-space. (A space is an m₁-space if each of its points has a closure-preserving local base.) A compact uncountable space K is given with an m₁-space, which answers questions raised by Dow, Ramírez Martínez and Tkachuk (2010) and Tkachuk (2011).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2,
author = {Ziqin Feng and Paul Gartside},
title = {Function spaces and local properties},
journal = {Fundamenta Mathematicae},
volume = {220},
year = {2013},
pages = {207-223},
zbl = {1286.54004},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2}
}
Ziqin Feng; Paul Gartside. Function spaces and local properties. Fundamenta Mathematicae, Tome 220 (2013) pp. 207-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-3-2/