When Cp(X) is domain representable
William Fleissner ; Lynne Yengulalp
Fundamenta Mathematicae, Tome 220 (2013), p. 65-81 / Harvested from The Polish Digital Mathematics Library

Let M be a metrizable group. Let G be a dense subgroup of MX. We prove that if G is domain representable, then G=MX. The following corollaries answer open questions. If X is completely regular and Cp(X) is domain representable, then X is discrete. If X is zero-dimensional, T₂, and Cp(X,) is subcompact, then X is discrete.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283372
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5,
     author = {William Fleissner and Lynne Yengulalp},
     title = {When $C\_p(X)$ is domain representable},
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {65-81},
     zbl = {1292.54012},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5}
}
William Fleissner; Lynne Yengulalp. When $C_p(X)$ is domain representable. Fundamenta Mathematicae, Tome 220 (2013) pp. 65-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5/