Let M be a metrizable group. Let G be a dense subgroup of . We prove that if G is domain representable, then . The following corollaries answer open questions. If X is completely regular and is domain representable, then X is discrete. If X is zero-dimensional, T₂, and is subcompact, then X is discrete.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5, author = {William Fleissner and Lynne Yengulalp}, title = {When $C\_p(X)$ is domain representable}, journal = {Fundamenta Mathematicae}, volume = {220}, year = {2013}, pages = {65-81}, zbl = {1292.54012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5} }
William Fleissner; Lynne Yengulalp. When $C_p(X)$ is domain representable. Fundamenta Mathematicae, Tome 220 (2013) pp. 65-81. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm223-1-5/