On ultrapowers of Banach spaces of type
Antonio Avilés ; Félix Cabello Sánchez ; Jesús M. F. Castillo ; Manuel González ; Yolanda Moreno
Fundamenta Mathematicae, Tome 220 (2013), p. 195-212 / Harvested from The Polish Digital Mathematics Library

We prove that no ultraproduct of Banach spaces via a countably incomplete ultrafilter can contain c₀ complemented. This shows that a "result" widely used in the theory of ultraproducts is wrong. We then amend a number of results whose proofs have been infected by that statement. In particular we provide proofs for the following statements: (i) All M-spaces, in particular all C(K)-spaces, have ultrapowers isomorphic to ultrapowers of c₀, as also do all their complemented subspaces isomorphic to their square. (ii) No ultrapower of the Gurariĭ space can be complemented in any M-space. (iii) There exist Banach spaces not complemented in any C(K)-space having ultrapowers isomorphic to a C(K)-space.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:282646
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-3-1,
     author = {Antonio Avil\'es and F\'elix Cabello S\'anchez and Jes\'us M. F. Castillo and Manuel Gonz\'alez and Yolanda Moreno},
     title = {On ultrapowers of Banach spaces of type $L\_{[?]}$
            },
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {195-212},
     zbl = {1300.46010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-3-1}
}
Antonio Avilés; Félix Cabello Sánchez; Jesús M. F. Castillo; Manuel González; Yolanda Moreno. On ultrapowers of Banach spaces of type $ℒ_{∞}$
            . Fundamenta Mathematicae, Tome 220 (2013) pp. 195-212. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-3-1/