We prove that for every ϵ > 0 there exists a minimal diffeomorphism f: ² → ² of class and semiconjugate to an ergodic translation with the following properties: zero entropy, sensitivity to initial conditions, and Li-Yorke chaos. These examples are obtained through the holonomy of the unstable foliation of Mañé’s example of a derived-from-Anosov diffeomorphism on ³.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-1-4,
author = {Alejandro Passeggi and Mart\'\i n Sambarino},
title = {Examples of minimal diffeomorphisms on T2 semiconjugate to an ergodic translation},
journal = {Fundamenta Mathematicae},
volume = {220},
year = {2013},
pages = {63-97},
zbl = {1321.37043},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-1-4}
}
Alejandro Passeggi; MartĂn Sambarino. Examples of minimal diffeomorphisms on 𝕋² semiconjugate to an ergodic translation. Fundamenta Mathematicae, Tome 220 (2013) pp. 63-97. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm222-1-4/