Weak square sequences and special Aronszajn trees
John Krueger
Fundamenta Mathematicae, Tome 220 (2013), p. 267-284 / Harvested from The Polish Digital Mathematics Library

A classical theorem of set theory is the equivalence of the weak square principle μ* with the existence of a special Aronszajn tree on μ⁺. We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:282717
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4,
     author = {John Krueger},
     title = {Weak square sequences and special Aronszajn trees},
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {267-284},
     zbl = {1306.03022},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4}
}
John Krueger. Weak square sequences and special Aronszajn trees. Fundamenta Mathematicae, Tome 220 (2013) pp. 267-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4/