A classical theorem of set theory is the equivalence of the weak square principle with the existence of a special Aronszajn tree on μ⁺. We introduce the notion of a weak square sequence on any regular uncountable cardinal, and prove that the equivalence between weak square sequences and special Aronszajn trees holds in general.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4, author = {John Krueger}, title = {Weak square sequences and special Aronszajn trees}, journal = {Fundamenta Mathematicae}, volume = {220}, year = {2013}, pages = {267-284}, zbl = {1306.03022}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4} }
John Krueger. Weak square sequences and special Aronszajn trees. Fundamenta Mathematicae, Tome 220 (2013) pp. 267-284. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-4/