Gibbs states for non-irreducible countable Markov shifts
Andrei E. Ghenciu ; Mario Roy
Fundamenta Mathematicae, Tome 220 (2013), p. 231-265 / Harvested from The Polish Digital Mathematics Library

We study Markov shifts over countable (finite or countably infinite) alphabets, i.e. shifts generated by incidence matrices. In particular, we derive necessary and sufficient conditions for the existence of a Gibbs state for a certain class of infinite Markov shifts. We further establish a characterization of the existence, uniqueness and ergodicity of invariant Gibbs states for this class of shifts. Our results generalize the well-known results for finitely irreducible Markov shifts.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:283178
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-3,
     author = {Andrei E. Ghenciu and Mario Roy},
     title = {Gibbs states for non-irreducible countable Markov shifts},
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {231-265},
     zbl = {1286.37011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-3}
}
Andrei E. Ghenciu; Mario Roy. Gibbs states for non-irreducible countable Markov shifts. Fundamenta Mathematicae, Tome 220 (2013) pp. 231-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm221-3-3/