A dimensional property of Cartesian product
Michael Levin
Fundamenta Mathematicae, Tome 220 (2013), p. 281-286 / Harvested from The Polish Digital Mathematics Library

We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:282844
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7,
     author = {Michael Levin},
     title = {A dimensional property of Cartesian product},
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {281-286},
     zbl = {1271.55002},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7}
}
Michael Levin. A dimensional property of Cartesian product. Fundamenta Mathematicae, Tome 220 (2013) pp. 281-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7/