We show that the Cartesian product of three hereditarily infinite-dimensional compact metric spaces is never hereditarily infinite-dimensional. It is quite surprising that the proof of this fact (and this is the only proof known to the author) essentially relies on algebraic topology.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7,
author = {Michael Levin},
title = {A dimensional property of Cartesian product},
journal = {Fundamenta Mathematicae},
volume = {220},
year = {2013},
pages = {281-286},
zbl = {1271.55002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7}
}
Michael Levin. A dimensional property of Cartesian product. Fundamenta Mathematicae, Tome 220 (2013) pp. 281-286. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-3-7/