We construct from ⋄ a T₂ example of a hereditarily Lindelöf space X that is not a D-space but is the union of two subspaces both of which are D-spaces. This answers a question of Arhangel'skii.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-2-3,
author = {D\'aniel T. Soukup and Paul J. Szeptycki},
title = {The union of two D-spaces need not be D},
journal = {Fundamenta Mathematicae},
volume = {220},
year = {2013},
pages = {129-137},
zbl = {1264.54042},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-2-3}
}
Dániel T. Soukup; Paul J. Szeptycki. The union of two D-spaces need not be D. Fundamenta Mathematicae, Tome 220 (2013) pp. 129-137. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-2-3/