Equilibrium measures for holomorphic endomorphisms of complex projective spaces
Mariusz Urbański ; Anna Zdunik
Fundamenta Mathematicae, Tome 220 (2013), p. 23-69 / Harvested from The Polish Digital Mathematics Library

Let f: ℙ → ℙ be a holomorphic endomorphism of a complex projective space k, k ≥ 1, and let J be the Julia set of f (the topological support of the unique maximal entropy measure). Then there exists a positive number κf>0 such that if ϕ: J → ℝ is a Hölder continuous function with sup(ϕ)-inf(ϕ)<κf, then ϕ admits a unique equilibrium state μϕ on J. This equilibrium state is equivalent to a fixed point of the normalized dual Perron-Frobenius operator. In addition, the dynamical system (f,μϕ) is K-mixing, whence ergodic. Proving almost periodicity of the corresponding Perron-Frobenius operator is the main technical task of the paper. It requires producing sufficiently many “good” inverse branches and controling the distortion of the Birkhoff sums of the potential ϕ. In the case when the Julia set J does not intersect any periodic irreducible algebraic variety contained in the critical set of f, we have κf=logd, where d is the algebraic degree of f.

Publié le : 2013-01-01
EUDML-ID : urn:eudml:doc:286463
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-1-3,
     author = {Mariusz Urba\'nski and Anna Zdunik},
     title = {Equilibrium measures for holomorphic endomorphisms of complex projective spaces},
     journal = {Fundamenta Mathematicae},
     volume = {220},
     year = {2013},
     pages = {23-69},
     zbl = {1276.37026},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-1-3}
}
Mariusz Urbański; Anna Zdunik. Equilibrium measures for holomorphic endomorphisms of complex projective spaces. Fundamenta Mathematicae, Tome 220 (2013) pp. 23-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm220-1-3/