In a recent paper of Feng and Sidorov they show that for β ∈ (1,(1+√5)/2) the set of β-expansions grows exponentially for every x ∈ (0,1/(β-1)). In this paper we study this growth rate further. We also consider the set of β-expansions from a dimension theory perspective.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-6, author = {Simon Baker}, title = {The growth rate and dimension theory of beta-expansions}, journal = {Fundamenta Mathematicae}, volume = {219}, year = {2012}, pages = {271-285}, zbl = {1266.37005}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-6} }
Simon Baker. The growth rate and dimension theory of beta-expansions. Fundamenta Mathematicae, Tome 219 (2012) pp. 271-285. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-6/