On hereditarily normal topological groups
Fundamenta Mathematicae, Tome 219 (2012), p. 245-251 / Harvested from The Polish Digital Mathematics Library

We investigate hereditarily normal topological groups and their subspaces. We prove that every compact subspace of a hereditarily normal topological group is metrizable. To prove this statement we first show that a hereditarily normal topological group with a non-trivial convergent sequence has Gδ-diagonal. This implies, in particular, that every countably compact subspace of a hereditarily normal topological group with a non-trivial convergent sequence is metrizable. Another corollary is that under the Proper Forcing Axiom, every countably compact subspace of a hereditarily normal topological group is metrizable.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283108
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-3,
     title = {On hereditarily normal topological groups},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {245-251},
     zbl = {1270.54037},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-3}
}
 (éd.). On hereditarily normal topological groups. Fundamenta Mathematicae, Tome 219 (2012) pp. 245-251. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-3-3/