A simultaneous selection theorem
Alexander D. Arvanitakis
Fundamenta Mathematicae, Tome 219 (2012), p. 1-14 / Harvested from The Polish Digital Mathematics Library

We prove a theorem that generalizes in a way both Michael's Selection Theorem and Dugundji's Simultaneous Extension Theorem. We use it to prove that if K is an uncountable compact metric space and X a Banach space, then C(K,X) is isomorphic to C(𝓒,X) where 𝓒 denotes the Cantor set. For X = ℝ, this gives the well known Milyutin Theorem.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:282856
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-1-1,
     author = {Alexander D. Arvanitakis},
     title = {A simultaneous selection theorem},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {1-14},
     zbl = {1257.54025},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-1-1}
}
Alexander D. Arvanitakis. A simultaneous selection theorem. Fundamenta Mathematicae, Tome 219 (2012) pp. 1-14. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm219-1-1/