Transference of weak type bounds of multiparameter ergodic and geometric maximal operators
Paul Hagelstein ; Alexander Stokolos
Fundamenta Mathematicae, Tome 219 (2012), p. 269-283 / Harvested from The Polish Digital Mathematics Library

Let U,...,Ud be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of d and the associated collection of rectangular parallelepipeds in d with sides parallel to the axes and dimensions of the form n××nd with (n,...,nd)Γ. The associated multiparameter geometric and ergodic maximal operators M and MΓ are defined respectively on L¹(d) and L¹(Ω) by Mg(x)=supxR1/|R|R|g(y)|dy and MΓf(ω)=sup(n,...,nd)Γ1/nndj=0n-1jd=0nd-1|f(UjUdjdω)|. Given a Young function Φ, it is shown that M satisfies the weak type estimate |xd:Mg(x)>α|CdΦ(c|g|/α) for a pair of positive constants C, c if and only if MΓ satisfies a corresponding weak type estimate μωΩ:MΓf(ω)>αCΓΩΦ(cΓ|f|/α). for a pair of positive constants CΓ, cΓ. Applications of this transference principle regarding the a.e. convergence of multiparameter ergodic averages associated to rare bases are given.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:282848
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4,
     author = {Paul Hagelstein and Alexander Stokolos},
     title = {Transference of weak type bounds of multiparameter ergodic and geometric maximal operators},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {269-283},
     zbl = {1257.37011},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4}
}
Paul Hagelstein; Alexander Stokolos. Transference of weak type bounds of multiparameter ergodic and geometric maximal operators. Fundamenta Mathematicae, Tome 219 (2012) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4/