Let be a non-periodic collection of commuting measure preserving transformations on a probability space (Ω,Σ,μ). Also let Γ be a nonempty subset of and the associated collection of rectangular parallelepipeds in with sides parallel to the axes and dimensions of the form with The associated multiparameter geometric and ergodic maximal operators and are defined respectively on and L¹(Ω) by and . Given a Young function Φ, it is shown that satisfies the weak type estimate for a pair of positive constants , if and only if satisfies a corresponding weak type estimate . for a pair of positive constants , . Applications of this transference principle regarding the a.e. convergence of multiparameter ergodic averages associated to rare bases are given.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4, author = {Paul Hagelstein and Alexander Stokolos}, title = {Transference of weak type bounds of multiparameter ergodic and geometric maximal operators}, journal = {Fundamenta Mathematicae}, volume = {219}, year = {2012}, pages = {269-283}, zbl = {1257.37011}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4} }
Paul Hagelstein; Alexander Stokolos. Transference of weak type bounds of multiparameter ergodic and geometric maximal operators. Fundamenta Mathematicae, Tome 219 (2012) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-3-4/