Dynamical properties of the automorphism groups of the random poset and random distributive lattice
Alexander S. Kechris ; Miodrag Sokić
Fundamenta Mathematicae, Tome 219 (2012), p. 69-94 / Harvested from The Polish Digital Mathematics Library

A method is developed for proving non-amenability of certain automorphism groups of countable structures and is used to show that the automorphism groups of the random poset and random distributive lattice are not amenable. The universal minimal flow of the automorphism group of the random distributive lattice is computed as a canonical space of linear orderings but it is also shown that the class of finite distributive lattices does not admit hereditary order expansions with the Amalgamation Property.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283154
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-1-4,
     author = {Alexander S. Kechris and Miodrag Soki\'c},
     title = {Dynamical properties of the automorphism groups of the random poset and random distributive lattice},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {69-94},
     zbl = {1260.03063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-1-4}
}
Alexander S. Kechris; Miodrag Sokić. Dynamical properties of the automorphism groups of the random poset and random distributive lattice. Fundamenta Mathematicae, Tome 219 (2012) pp. 69-94. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm218-1-4/