We prove that the space of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space is (m+k-2)-connected for any m-connected cell complex X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6,
author = {Jacob Mostovoy and Rustam Sadykov},
title = {On the connectivity of finite subset spaces},
journal = {Fundamenta Mathematicae},
volume = {219},
year = {2012},
pages = {279-282},
zbl = {1253.55014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6}
}
Jacob Mostovoy; Rustam Sadykov. On the connectivity of finite subset spaces. Fundamenta Mathematicae, Tome 219 (2012) pp. 279-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6/