We prove that the space of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space is (m+k-2)-connected for any m-connected cell complex X.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6, author = {Jacob Mostovoy and Rustam Sadykov}, title = {On the connectivity of finite subset spaces}, journal = {Fundamenta Mathematicae}, volume = {219}, year = {2012}, pages = {279-282}, zbl = {1253.55014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6} }
Jacob Mostovoy; Rustam Sadykov. On the connectivity of finite subset spaces. Fundamenta Mathematicae, Tome 219 (2012) pp. 279-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6/