On the connectivity of finite subset spaces
Jacob Mostovoy ; Rustam Sadykov
Fundamenta Mathematicae, Tome 219 (2012), p. 279-282 / Harvested from The Polish Digital Mathematics Library

We prove that the space expkSm+1 of nonempty subsets of cardinality at most k in a bouquet of m+1-dimensional spheres is (m+k-2)-connected. This, as shown by Tuffley, implies that the space expkX is (m+k-2)-connected for any m-connected cell complex X.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:283054
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6,
     author = {Jacob Mostovoy and Rustam Sadykov},
     title = {On the connectivity of finite subset spaces},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {279-282},
     zbl = {1253.55014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6}
}
Jacob Mostovoy; Rustam Sadykov. On the connectivity of finite subset spaces. Fundamenta Mathematicae, Tome 219 (2012) pp. 279-282. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-6/