We show that the super fixed point property for nonexpansive mappings and for asymptotically nonexpansive mappings in the intermediate sense are equivalent. As a consequence, we obtain fixed point theorems for asymptotically nonexpansive mappings in uniformly nonsquare and uniformly noncreasy Banach spaces. The results are generalized to commuting families of asymptotically nonexpansive mappings.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-5, author = {Andrzej Wi\'snicki}, title = {The super fixed point property for asymptotically nonexpansive mappings}, journal = {Fundamenta Mathematicae}, volume = {219}, year = {2012}, pages = {265-277}, zbl = {1270.47047}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-5} }
Andrzej Wiśnicki. The super fixed point property for asymptotically nonexpansive mappings. Fundamenta Mathematicae, Tome 219 (2012) pp. 265-277. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-3-5/