Finite-dimensional spaces in resolving classes
Jeffrey Strom
Fundamenta Mathematicae, Tome 219 (2012), p. 171-187 / Harvested from The Polish Digital Mathematics Library

Using the theory of resolving classes, we show that if X is a CW complex of finite type such that map(X,S2n+1) for all sufficiently large n, then map⁎(X,K) ∼ ∗ for every simply-connected finite-dimensional CW complex K; and under mild hypotheses on π₁(X), the same conclusion holds for all finite-dimensional complexes K. Since it is comparatively easy to prove the former condition for X = Bℤ/p (we give a proof in an appendix), this result can be applied to give a new, more elementary proof of the Sullivan conjecture.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:282666
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-2-3,
     author = {Jeffrey Strom},
     title = {Finite-dimensional spaces in resolving classes},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {171-187},
     zbl = {1251.55010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-2-3}
}
Jeffrey Strom. Finite-dimensional spaces in resolving classes. Fundamenta Mathematicae, Tome 219 (2012) pp. 171-187. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm217-2-3/