Infinite paths and cliques in random graphs
Alessandro Berarducci ; Pietro Majer ; Matteo Novaga
Fundamenta Mathematicae, Tome 219 (2012), p. 163-191 / Harvested from The Polish Digital Mathematics Library

We study the thresholds for the emergence of various properties in random subgraphs of (ℕ, <). In particular, we give sharp sufficient conditions for the existence of (finite or infinite) cliques and paths in a random subgraph. No specific assumption on the probability is made. The main tools are a topological version of Ramsey theory, exchangeability theory and elementary ergodic theory.

Publié le : 2012-01-01
EUDML-ID : urn:eudml:doc:282941
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm216-2-6,
     author = {Alessandro Berarducci and Pietro Majer and Matteo Novaga},
     title = {Infinite paths and cliques in random graphs},
     journal = {Fundamenta Mathematicae},
     volume = {219},
     year = {2012},
     pages = {163-191},
     zbl = {1243.05216},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm216-2-6}
}
Alessandro Berarducci; Pietro Majer; Matteo Novaga. Infinite paths and cliques in random graphs. Fundamenta Mathematicae, Tome 219 (2012) pp. 163-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm216-2-6/