Expansions of subfields of the real field by a discrete set
Philipp Hieronymi
Fundamenta Mathematicae, Tome 215 (2011), p. 167-175 / Harvested from The Polish Digital Mathematics Library

Let K be a subfield of the real field, D ⊆ K be a discrete set and f: Dⁿ → K be such that f(Dⁿ) is somewhere dense. Then (K,f) defines ℤ. We present several applications of this result. We show that K expanded by predicates for different cyclic multiplicative subgroups defines ℤ. Moreover, we prove that every definably complete expansion of a subfield of the real field satisfies an analogue of the Baire category theorem.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283210
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4,
     author = {Philipp Hieronymi},
     title = {Expansions of subfields of the real field by a discrete set},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {167-175},
     zbl = {1270.03059},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4}
}
Philipp Hieronymi. Expansions of subfields of the real field by a discrete set. Fundamenta Mathematicae, Tome 215 (2011) pp. 167-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4/