Let K be a subfield of the real field, D ⊆ K be a discrete set and f: Dⁿ → K be such that f(Dⁿ) is somewhere dense. Then (K,f) defines ℤ. We present several applications of this result. We show that K expanded by predicates for different cyclic multiplicative subgroups defines ℤ. Moreover, we prove that every definably complete expansion of a subfield of the real field satisfies an analogue of the Baire category theorem.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4, author = {Philipp Hieronymi}, title = {Expansions of subfields of the real field by a discrete set}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {167-175}, zbl = {1270.03059}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4} }
Philipp Hieronymi. Expansions of subfields of the real field by a discrete set. Fundamenta Mathematicae, Tome 215 (2011) pp. 167-175. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-2-4/