Remainders of metrizable spaces and a generalization of Lindelöf Σ-spaces
A. V. Arhangel'skii
Fundamenta Mathematicae, Tome 215 (2011), p. 87-100 / Harvested from The Polish Digital Mathematics Library

We establish some new properties of remainders of metrizable spaces. In particular, we show that if the weight of a metrizable space X does not exceed 2ω, then any remainder of X in a Hausdorff compactification is a Lindelöf Σ-space. An example of a metrizable space whose remainder in some compactification is not a Lindelöf Σ-space is given. A new class of topological spaces naturally extending the class of Lindelöf Σ-spaces is introduced and studied. This leads to the following theorem: if a metrizable space X has a remainder Y with a Gδ-diagonal, then both X and Y are separable and metrizable. Some new results on remainders of topological groups are also established.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:282733
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-1-5,
     author = {A. V. Arhangel'skii},
     title = {Remainders of metrizable spaces and a generalization of Lindel\"of $\Sigma$-spaces},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {87-100},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-1-5}
}
A. V. Arhangel'skii. Remainders of metrizable spaces and a generalization of Lindelöf Σ-spaces. Fundamenta Mathematicae, Tome 215 (2011) pp. 87-100. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm215-1-5/