Let X be a crowded metric space of weight κ that is either -like or locally compact. Let y ∈ βX∖X and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of (βX∖X)∖y with y as the unique limit point. If, in addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal, and hence (βX∖X)∖y is not normal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4,
author = {William Fleissner and Lynne Yengulalp},
title = {Nonnormality points of bX\X},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {269-283},
zbl = {1259.54010},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4}
}
William Fleissner; Lynne Yengulalp. Nonnormality points of βX∖X. Fundamenta Mathematicae, Tome 215 (2011) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4/