Let X be a crowded metric space of weight κ that is either -like or locally compact. Let y ∈ βX∖X and assume GCH. Then a space of nonuniform ultrafilters embeds as a closed subspace of (βX∖X)∖y with y as the unique limit point. If, in addition, y is a regular z-ultrafilter, then the space of nonuniform ultrafilters is not normal, and hence (βX∖X)∖y is not normal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4, author = {William Fleissner and Lynne Yengulalp}, title = {Nonnormality points of bX\X}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {269-283}, zbl = {1259.54010}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4} }
William Fleissner; Lynne Yengulalp. Nonnormality points of βX∖X. Fundamenta Mathematicae, Tome 215 (2011) pp. 269-283. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-4/