On countable dense and strong n-homogeneity
Jan van Mill
Fundamenta Mathematicae, Tome 215 (2011), p. 215-239 / Harvested from The Polish Digital Mathematics Library

We prove that if a space X is countable dense homogeneous and no set of size n-1 separates it, then X is strongly n-homogeneous. Our main result is the construction of an example of a Polish space X that is strongly n-homogeneous for every n, but not countable dense homogeneous.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:286483
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-2,
     author = {Jan van Mill},
     title = {On countable dense and strong n-homogeneity},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {215-239},
     zbl = {1248.54016},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-2}
}
Jan van Mill. On countable dense and strong n-homogeneity. Fundamenta Mathematicae, Tome 215 (2011) pp. 215-239. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-2/