For any positive integer n, Khovanov and Rozansky constructed a bigraded link homology from which you can recover the 𝔰𝔩ₙ link polynomial invariants. We generalize the Khovanov-Rozansky construction in the case of finite 4-valent graphs embedded in a ball B³ ⊂ ℝ³. More precisely, we prove that the homology associated to a diagram of a 4-valent graph embedded in B³ ⊂ ℝ³ is invariant under the graph moves introduced by Kauffman.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-1, author = {Emmanuel Wagner}, title = {Khovanov-Rozansky homology for embedded graphs}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {201-214}, zbl = {1235.57012}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-1} }
Emmanuel Wagner. Khovanov-Rozansky homology for embedded graphs. Fundamenta Mathematicae, Tome 215 (2011) pp. 201-214. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-3-1/