Loading [MathJax]/extensions/MathZoom.js
On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets
Ludwik Jaksztas
Fundamenta Mathematicae, Tome 215 (2011), p. 119-133 / Harvested from The Polish Digital Mathematics Library

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map gσ. We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J0,σ is continuous at σ₀ as the function of the parameter σ¯ if and only if HD(J0,σ)4/3. Since HD(J0,σ)>4/3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of HD(J0,σ) on an open and dense subset of ∂₀.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283059
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-2-2,
     author = {Ludwik Jaksztas},
     title = {On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {119-133},
     zbl = {1280.37046},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-2-2}
}
Ludwik Jaksztas. On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets. Fundamenta Mathematicae, Tome 215 (2011) pp. 119-133. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm214-2-2/