Suppose t = (T,T₁,p) is a triple of two countable theories T ⊆ T₁ in vocabularies τ ⊂ τ₁ and a τ₁-type p over the empty set. We show that the Hanf number for the property ’there is a model M₁ of T₁ which omits p, but M₁ ↾ τ is saturated’ is essentially equal to the Löwenheim number of second order logic. In Section 4 we make exact computations of these Hanf numbers and note some distinctions between ’first order’ and ’second order quantification’. In particular, we show that if κ is uncountable, then , where h³ is the ’normal’ notion of Hanf function (Definition 4.12).
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-5, author = {John T. Baldwin and Saharon Shelah}, title = {A Hanf number for saturation and omission}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {255-270}, zbl = {1254.03072}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-5} }
John T. Baldwin; Saharon Shelah. A Hanf number for saturation and omission. Fundamenta Mathematicae, Tome 215 (2011) pp. 255-270. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-5/