We construct a compact set C of Hausdorff dimension zero such that cof(𝒩) many translates of C cover the real line. Hence it is consistent with ZFC that less than continuum many translates of a zero-dimensional compact set can cover the real line. This answers a question of Dan Mauldin.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-2, author = {Andr\'as M\'ath\'e}, title = {Covering the real line with translates of a zero-dimensional compact set}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {213-219}, zbl = {1230.03079}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-2} }
András Máthé. Covering the real line with translates of a zero-dimensional compact set. Fundamenta Mathematicae, Tome 215 (2011) pp. 213-219. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm213-3-2/