We prove that for i ≥ 1, the arithmetic does not prove a variant of its own Herbrand consistency restricted to the terms of depth in , where ε is an arbitrarily small constant greater than zero. On the other hand, the provability holds for the set of terms of depths in .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-3-1,
author = {Zofia Adamowicz and Konrad Zdanowski},
title = {Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {191-216},
zbl = {1256.03062},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-3-1}
}
Zofia Adamowicz; Konrad Zdanowski. Lower and upper bounds for the provability of Herbrand consistency in weak arithmetics. Fundamenta Mathematicae, Tome 215 (2011) pp. 191-216. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-3-1/