A two-dimensional univoque set
Martijn de Vrie ; Vilmos Komornik
Fundamenta Mathematicae, Tome 215 (2011), p. 175-189 / Harvested from The Polish Digital Mathematics Library

Let J ⊂ ℝ² be the set of couples (x,q) with q > 1 such that x has at least one representation of the form x=i=1ciq-i with integer coefficients ci satisfying 0ci<q, i ≥ 1. In this case we say that (ci)=cc... is an expansion of x in base q. Let U be the set of couples (x,q) ∈ J such that x has exactly one expansion in base q. In this paper we deduce some topological and combinatorial properties of the set U. We characterize the closure of U, and we determine its Hausdorff dimension. For (x,q) ∈ J, we also prove new properties of the lexicographically largest expansion of x in base q.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283361
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-2-4,
     author = {Martijn de Vrie and Vilmos Komornik},
     title = {A two-dimensional univoque set},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {175-189},
     zbl = {1257.11010},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-2-4}
}
Martijn de Vrie; Vilmos Komornik. A two-dimensional univoque set. Fundamenta Mathematicae, Tome 215 (2011) pp. 175-189. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-2-4/