We show that there is no uniformly continuous selection of the quotient map relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction from onto .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4,
author = {N. J. Kalton},
title = {Lipschitz and uniform embeddings into $l\_{[?]}$
},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {53-69},
zbl = {1220.46014},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4}
}
N. J. Kalton. Lipschitz and uniform embeddings into $ℓ_{∞}$
. Fundamenta Mathematicae, Tome 215 (2011) pp. 53-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4/