We show that there is no uniformly continuous selection of the quotient map relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction from onto .
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4, author = {N. J. Kalton}, title = {Lipschitz and uniform embeddings into $l\_{[?]}$ }, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {53-69}, zbl = {1220.46014}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4} }
N. J. Kalton. Lipschitz and uniform embeddings into $ℓ_{∞}$ . Fundamenta Mathematicae, Tome 215 (2011) pp. 53-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4/