Lipschitz and uniform embeddings into
N. J. Kalton
Fundamenta Mathematicae, Tome 215 (2011), p. 53-69 / Harvested from The Polish Digital Mathematics Library

We show that there is no uniformly continuous selection of the quotient map Q:/c relative to the unit ball. We use this to construct an answer to a problem of Benyamini and Lindenstrauss; there is a Banach space X such that there is a no Lipschitz retraction of X** onto X; in fact there is no uniformly continuous retraction from BX** onto BX.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:283253
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4,
     author = {N. J. Kalton},
     title = {Lipschitz and uniform embeddings into $l\_{[?]}$
            },
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {53-69},
     zbl = {1220.46014},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4}
}
N. J. Kalton. Lipschitz and uniform embeddings into $ℓ_{∞}$
            . Fundamenta Mathematicae, Tome 215 (2011) pp. 53-69. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-4/