Our main result states that every fixed-point free continuous self-map of ℝⁿ is colorable. This result can be reformulated as follows: A continuous map f: ℝⁿ → ℝⁿ is fixed-point free iff f̃: βℝⁿ → βℝⁿ is fixed-point free. We also obtain a generalization of this fact and present some examples
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-1,
author = {R. Z. Buzyakova and A. Chigogidze},
title = {Fixed-point free maps of Euclidean spaces},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {1-16},
zbl = {1239.54020},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-1}
}
R. Z. Buzyakova; A. Chigogidze. Fixed-point free maps of Euclidean spaces. Fundamenta Mathematicae, Tome 215 (2011) pp. 1-16. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm212-1-1/