We study the typical behaviour (in the sense of Baire’s category) of the multifractal box dimensions of measures on . We prove that in many cases a typical measure μ is as irregular as possible, i.e. the lower multifractal box dimensions of μ attain the smallest possible value and the upper multifractal box dimensions of μ attain the largest possible value.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3, author = {L. Olsen}, title = {Typical multifractal box dimensions of measures}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {245-266}, zbl = {1215.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3} }
L. Olsen. Typical multifractal box dimensions of measures. Fundamenta Mathematicae, Tome 215 (2011) pp. 245-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3/