We study the typical behaviour (in the sense of Baire’s category) of the multifractal box dimensions of measures on . We prove that in many cases a typical measure μ is as irregular as possible, i.e. the lower multifractal box dimensions of μ attain the smallest possible value and the upper multifractal box dimensions of μ attain the largest possible value.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3,
author = {L. Olsen},
title = {Typical multifractal box dimensions of measures},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {245-266},
zbl = {1215.28008},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3}
}
L. Olsen. Typical multifractal box dimensions of measures. Fundamenta Mathematicae, Tome 215 (2011) pp. 245-266. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-3/