Let be arbitrary nonzero real numbers. An -decomposition of a function f:ℝ → ℝ is a sum where is an -periodic function. Such a decomposition is not unique because there are several solutions of the equation with -periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the -decomposition is essentially unique. We characterize those periods for which essential uniqueness holds.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2, author = {Viktor Harangi}, title = {On the uniqueness of periodic decomposition}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {225-244}, zbl = {1221.39031}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2} }
Viktor Harangi. On the uniqueness of periodic decomposition. Fundamenta Mathematicae, Tome 215 (2011) pp. 225-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2/