On the uniqueness of periodic decomposition
Viktor Harangi
Fundamenta Mathematicae, Tome 215 (2011), p. 225-244 / Harvested from The Polish Digital Mathematics Library

Let a,...,ak be arbitrary nonzero real numbers. An (a,...,ak)-decomposition of a function f:ℝ → ℝ is a sum f++fk=f where fi: is an ai-periodic function. Such a decomposition is not unique because there are several solutions of the equation h++hk=0 with hi:ai-periodic. We will give solutions of this equation with a certain simple structure (trivial solutions) and study whether there exist other solutions or not. If not, we say that the (a,...,ak)-decomposition is essentially unique. We characterize those periods for which essential uniqueness holds.

Publié le : 2011-01-01
EUDML-ID : urn:eudml:doc:282793
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2,
     author = {Viktor Harangi},
     title = {On the uniqueness of periodic decomposition},
     journal = {Fundamenta Mathematicae},
     volume = {215},
     year = {2011},
     pages = {225-244},
     zbl = {1221.39031},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2}
}
Viktor Harangi. On the uniqueness of periodic decomposition. Fundamenta Mathematicae, Tome 215 (2011) pp. 225-244. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-2/