We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-1, author = {Menachem Kojman and Henryk Michalewski}, title = {Borel extensions of Baire measures in ZFC}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {197-223}, zbl = {1222.28003}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-1} }
Menachem Kojman; Henryk Michalewski. Borel extensions of Baire measures in ZFC. Fundamenta Mathematicae, Tome 215 (2011) pp. 197-223. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-3-1/