Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set of a fiber preserving map f: E → E’.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2, author = {Mahender Singh}, title = {Parametrized Borsuk-Ulam problem for projective space bundles}, journal = {Fundamenta Mathematicae}, volume = {215}, year = {2011}, pages = {135-147}, zbl = {1220.55002}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2} }
Mahender Singh. Parametrized Borsuk-Ulam problem for projective space bundles. Fundamenta Mathematicae, Tome 215 (2011) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2/