Let π: E → B be a fiber bundle with fiber having the mod 2 cohomology algebra of a real or a complex projective space and let π’: E’ → B be a vector bundle such that ℤ₂ acts fiber preserving and freely on E and E’-0, where 0 stands for the zero section of the bundle π’: E’ → B. For a fiber preserving ℤ₂-equivariant map f: E → E’, we estimate the cohomological dimension of the zero set . As an application, we also estimate the cohomological dimension of the ℤ₂-coincidence set of a fiber preserving map f: E → E’.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2,
author = {Mahender Singh},
title = {Parametrized Borsuk-Ulam problem for projective space bundles},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {135-147},
zbl = {1220.55002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2}
}
Mahender Singh. Parametrized Borsuk-Ulam problem for projective space bundles. Fundamenta Mathematicae, Tome 215 (2011) pp. 135-147. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-2-2/