We consider the expansion of the real field by the group of rational points of an elliptic curve over the rational numbers. We prove a completeness result, followed by a quantifier elimination result. Moreover we show that open sets definable in that structure are semialgebraic.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-1-2,
author = {Ayhan G\"unayd\i n and Philipp Hieronymi},
title = {The real field with the rational points of an elliptic curve},
journal = {Fundamenta Mathematicae},
volume = {215},
year = {2011},
pages = {15-40},
zbl = {1232.03025},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-1-2}
}
Ayhan Günaydın; Philipp Hieronymi. The real field with the rational points of an elliptic curve. Fundamenta Mathematicae, Tome 215 (2011) pp. 15-40. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm211-1-2/