The Hurwitz action of the n-braid group Bₙ on the n-fold direct product of the m-braid group is studied. We show that the orbit of any n- tuple of the n standard generators of consists of the (n-1)th powers of n+1 elements.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm210-1-3, author = {Yoshiro Yaguchi}, title = {The orbits of the Hurwitz action of the braid groups on the standard generators}, journal = {Fundamenta Mathematicae}, volume = {209}, year = {2010}, pages = {63-71}, zbl = {1220.20033}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm210-1-3} }
Yoshiro Yaguchi. The orbits of the Hurwitz action of the braid groups on the standard generators. Fundamenta Mathematicae, Tome 209 (2010) pp. 63-71. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm210-1-3/