For each natural number n ≥ 1 and each pair of ordinals α,β with n ≤ α ≤ β ≤ ω(⁺), where ω(⁺) is the first ordinal of cardinality ⁺, we construct a continuum such that (a) ; (b) ; (c) ; (d) if β < ω(⁺), then is separable and first countable; (e) if n = 1, then can be made chainable or hereditarily decomposable; (f) if α = β < ω(⁺), then can be made hereditarily indecomposable; (g) if n = 1 and α = β < ω(⁺), then can be made chainable and hereditarily indecomposable. In particular, we answer the question raised by Chatyrko and Fedorchuk whether every non-degenerate chainable space has Dimensionsgrad equal to 1. Moreover, we establish results that enable us to compute the Dimensionsgrad of a number of spaces constructed by Charalambous, Chatyrko, and Fedorchuk.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3, author = {Michael G. Charalambous and Jerzy Krzempek}, title = {On Dimensionsgrad, resolutions, and chainable continua}, journal = {Fundamenta Mathematicae}, volume = {209}, year = {2010}, pages = {243-265}, zbl = {1213.54048}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3} }
Michael G. Charalambous; Jerzy Krzempek. On Dimensionsgrad, resolutions, and chainable continua. Fundamenta Mathematicae, Tome 209 (2010) pp. 243-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3/