On Dimensionsgrad, resolutions, and chainable continua
Michael G. Charalambous ; Jerzy Krzempek
Fundamenta Mathematicae, Tome 209 (2010), p. 243-265 / Harvested from The Polish Digital Mathematics Library

For each natural number n ≥ 1 and each pair of ordinals α,β with n ≤ α ≤ β ≤ ω(⁺), where ω(⁺) is the first ordinal of cardinality ⁺, we construct a continuum Sn,α,β such that (a) dimSn,α,β=n; (b) trDgSn,α,β=trDgoSn,α,β=α; (c) trindSn,α,β=trIndSn,α,β=β; (d) if β < ω(⁺), then Sn,α,β is separable and first countable; (e) if n = 1, then Sn,α,β can be made chainable or hereditarily decomposable; (f) if α = β < ω(⁺), then Sn,α,β can be made hereditarily indecomposable; (g) if n = 1 and α = β < ω(⁺), then Sn,α,β can be made chainable and hereditarily indecomposable. In particular, we answer the question raised by Chatyrko and Fedorchuk whether every non-degenerate chainable space has Dimensionsgrad equal to 1. Moreover, we establish results that enable us to compute the Dimensionsgrad of a number of spaces constructed by Charalambous, Chatyrko, and Fedorchuk.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:282600
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3,
     author = {Michael G. Charalambous and Jerzy Krzempek},
     title = {On Dimensionsgrad, resolutions, and chainable continua},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {243-265},
     zbl = {1213.54048},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3}
}
Michael G. Charalambous; Jerzy Krzempek. On Dimensionsgrad, resolutions, and chainable continua. Fundamenta Mathematicae, Tome 209 (2010) pp. 243-265. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-3-3/