We classify all homeomorphisms of the double cover of the Sierpiński gasket in n dimensions. We show that there is a unique homeomorphism mapping any cell to any other cell with prescribed mapping of boundary points, and any homeomorphism is either a permutation of a finite number of topological cells or a mapping of infinite order with one or two fixed points. In contrast we show that any compact fractafold based on the level-3 Sierpiński gasket is topologically rigid.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-2-5, author = {Ying Ying Chan and Robert S. Strichartz}, title = {Homeomorphisms of fractafolds}, journal = {Fundamenta Mathematicae}, volume = {209}, year = {2010}, pages = {177-191}, zbl = {1219.28008}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-2-5} }
Ying Ying Chan; Robert S. Strichartz. Homeomorphisms of fractafolds. Fundamenta Mathematicae, Tome 209 (2010) pp. 177-191. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-2-5/