Let X and Y be one-dimensional Peano continua. If the fundamental groups of X and Y are isomorphic, then X and Y are homotopy equivalent. Every homomorphism from the fundamental group of X to that of Y is a composition of a homomorphism induced from a continuous map and a base point change isomorphism.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-3,
author = {Katsuya Eda},
title = {Homotopy types of one-dimensional Peano continua},
journal = {Fundamenta Mathematicae},
volume = {209},
year = {2010},
pages = {27-42},
zbl = {1201.55002},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-3}
}
Katsuya Eda. Homotopy types of one-dimensional Peano continua. Fundamenta Mathematicae, Tome 209 (2010) pp. 27-42. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-3/