Differentiation of n-convex functions
H. Fejzić ; R. E. Svetic ; C. E. Weil
Fundamenta Mathematicae, Tome 209 (2010), p. 9-25 / Harvested from The Polish Digital Mathematics Library

The main result of this paper is that if f is n-convex on a measurable subset E of ℝ, then f is n-2 times differentiable, n-2 times Peano differentiable and the corresponding derivatives are equal, and f(n-1)=f(n-1) except on a countable set. Moreover f(n-1) is approximately differentiable with approximate derivative equal to the nth approximate Peano derivative of f almost everywhere.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:282761
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-2,
     author = {H. Fejzi\'c and R. E. Svetic and C. E. Weil},
     title = {Differentiation of n-convex functions},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {9-25},
     zbl = {1202.26008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-2}
}
H. Fejzić; R. E. Svetic; C. E. Weil. Differentiation of n-convex functions. Fundamenta Mathematicae, Tome 209 (2010) pp. 9-25. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm209-1-2/