A new class of weakly countably determined Banach spaces
K. K. Kampoukos ; S. K. Mercourakis
Fundamenta Mathematicae, Tome 209 (2010), p. 155-171 / Harvested from The Polish Digital Mathematics Library

A class of Banach spaces, countably determined in their weak topology (hence, WCD spaces) is defined and studied; we call them strongly weakly countably determined (SWCD) Banach spaces. The main results are the following: (i) A separable Banach space not containing ℓ¹(ℕ) is SWCD if and only if it has separable dual; thus in particular, not every separable Banach space is SWCD. (ii) If K is a compact space, then the space C(K) is SWCD if and only if K is countable.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:283032
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-2-3,
     author = {K. K. Kampoukos and S. K. Mercourakis},
     title = {A new class of weakly countably determined Banach spaces},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {155-171},
     zbl = {1205.46008},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-2-3}
}
K. K. Kampoukos; S. K. Mercourakis. A new class of weakly countably determined Banach spaces. Fundamenta Mathematicae, Tome 209 (2010) pp. 155-171. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-2-3/