On the difference property of Borel measurable functions
Hiroshi Fujita ; Tamás Mátrai
Fundamenta Mathematicae, Tome 209 (2010), p. 57-73 / Harvested from The Polish Digital Mathematics Library

If an atomlessly measurable cardinal exists, then the class of Lebesgue measurable functions, the class of Borel functions, and the Baire classes of all orders have the difference property. This gives a consistent positive answer to Laczkovich's Problem 2 [Acta Math. Acad. Sci. Hungar. 35 (1980)]. We also give a complete positive answer to Laczkovich's Problem 3 concerning Borel functions with Baire-α differences.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:282971
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-1-4,
     author = {Hiroshi Fujita and Tam\'as M\'atrai},
     title = {On the difference property of Borel measurable functions},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {57-73},
     zbl = {1209.03040},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-1-4}
}
Hiroshi Fujita; Tamás Mátrai. On the difference property of Borel measurable functions. Fundamenta Mathematicae, Tome 209 (2010) pp. 57-73. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm208-1-4/