Topological friction in aperiodic minimal m-actions
Jarosław Kwapisz
Fundamenta Mathematicae, Tome 209 (2010), p. 175-178 / Harvested from The Polish Digital Mathematics Library

For a continuous map f preserving orbits of an aperiodic m-action on a compact space, its displacement function assigns to x the “time” tm it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:282658
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5,
     author = {Jaros\l aw Kwapisz},
     title = {Topological friction in aperiodic minimal $$\mathbb{R}$^m$-actions},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {175-178},
     zbl = {1190.37009},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5}
}
Jarosław Kwapisz. Topological friction in aperiodic minimal $ℝ^m$-actions. Fundamenta Mathematicae, Tome 209 (2010) pp. 175-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5/