For a continuous map f preserving orbits of an aperiodic -action on a compact space, its displacement function assigns to x the “time” it takes to move x to f(x). We show that this function is continuous if the action is minimal. In particular, f is homotopic to the identity along the orbits of the action.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5,
author = {Jaros\l aw Kwapisz},
title = {Topological friction in aperiodic minimal $$\mathbb{R}$^m$-actions},
journal = {Fundamenta Mathematicae},
volume = {209},
year = {2010},
pages = {175-178},
zbl = {1190.37009},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5}
}
Jarosław Kwapisz. Topological friction in aperiodic minimal $ℝ^m$-actions. Fundamenta Mathematicae, Tome 209 (2010) pp. 175-178. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-5/