Measurable cardinals and the cofinality of the symmetric group
Sy-David Friedman ; Lyubomyr Zdomskyy
Fundamenta Mathematicae, Tome 209 (2010), p. 101-122 / Harvested from The Polish Digital Mathematics Library

Assuming the existence of a P₂κ-hypermeasurable cardinal, we construct a model of Set Theory with a measurable cardinal κ such that 2κ=κ and the group Sym(κ) of all permutations of κ cannot be written as the union of a chain of proper subgroups of length < κ⁺⁺. The proof involves iteration of a suitably defined uncountable version of the Miller forcing poset as well as the “tuning fork” argument introduced by the first author and K. Thompson [J. Symbolic Logic 73 (2008)].

Publié le : 2010-01-01
EUDML-ID : urn:eudml:doc:286122
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-1,
     author = {Sy-David Friedman and Lyubomyr Zdomskyy},
     title = {Measurable cardinals and the cofinality of the symmetric group},
     journal = {Fundamenta Mathematicae},
     volume = {209},
     year = {2010},
     pages = {101-122},
     zbl = {1196.03063},
     language = {en},
     url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-1}
}
Sy-David Friedman; Lyubomyr Zdomskyy. Measurable cardinals and the cofinality of the symmetric group. Fundamenta Mathematicae, Tome 209 (2010) pp. 101-122. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-2-1/