We show that Martin’s conjecture on Π¹₁ functions uniformly -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant functions is equivalent over ZFC to -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2, author = {C. T. Chong and Wei Wang and Liang Yu}, title = {The strength of the projective Martin conjecture}, journal = {Fundamenta Mathematicae}, volume = {209}, year = {2010}, pages = {21-27}, zbl = {1196.03054}, language = {en}, url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2} }
C. T. Chong; Wei Wang; Liang Yu. The strength of the projective Martin conjecture. Fundamenta Mathematicae, Tome 209 (2010) pp. 21-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2/