We show that Martin’s conjecture on Π¹₁ functions uniformly -order preserving on a cone implies Π¹₁ Turing Determinacy over ZF + DC. In addition, it is also proved that for n ≥ 0, this conjecture for uniformly degree invariant functions is equivalent over ZFC to -Axiom of Determinacy. As a corollary, the consistency of the conjecture for uniformly degree invariant Π¹₁ functions implies the consistency of the existence of a Woodin cardinal.
@article{bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2,
author = {C. T. Chong and Wei Wang and Liang Yu},
title = {The strength of the projective Martin conjecture},
journal = {Fundamenta Mathematicae},
volume = {209},
year = {2010},
pages = {21-27},
zbl = {1196.03054},
language = {en},
url = {http://dml.mathdoc.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2}
}
C. T. Chong; Wei Wang; Liang Yu. The strength of the projective Martin conjecture. Fundamenta Mathematicae, Tome 209 (2010) pp. 21-27. http://gdmltest.u-ga.fr/item/bwmeta1.element.bwnjournal-article-doi-10_4064-fm207-1-2/